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FOREWORD

This work was performed under US Army Natick Laboratories Contract
No. DAAG17-70-C-0127 during the period of 1 Apr 70 to 31 Mar 71. The
Project No. was lFI62203Dl95 entitled "Exploratory Development of
Airdrop Systems", and the Task was No. 13 entitled "Impact Phenomena".
Messrs. Edward J. Giebutowski and Marshall S. Gustin of the Airdrop
Engineering Laboratory served as the Project Offiuers.

The effort is part of a continuing investigation directed towara
obtaining a better understanding of the failure mechanism of energy
dissipater materials, and the response of airdroppable supplies and
equipment to airdrop impact phenomena; and toward obtaining improved
airdrop energy disipater materials and techniques.

This report is concerned primarily with an analytical study of the
configuration change of an individual cell of paper honeycomb energy
dissipater material as it is crushed, in order to determine the relative
effect of changes in various cell design characteristics on level of
strength and uniformity of performance.
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ABSTRACT (Continued)

the total elastic strain energy, bending and stretching strain energies,
and buckling stress. These quantities are obtained for hexagonal shells 4
with variations in various geometrical parameters, such as radius/thickness,
radius/length, effective glue line width and the mechanical properties;
Poisson's ratio and Young's modulus.
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ABSTRACT

To obtain some insight into the failure mechanism
of paper honeycomb and to identify the significant para-
meters an analysis has been made of the buckling of a
thin walled, axially loaded cylinder with a hexagonal
cross section. The analysis begins with a derivation of
mathematically exact expressions for the radial deflec-
tions required to change a circularly cylindrical shell
into a developable polyhedral shape. This expression is
then put into the form of a Fourier series which repre-
sents the radial disp-lacements of a buckled circular
cylindrical shell having any longitudinal and circumfer-
ential mode numbers. Hexagonal honeycomb cells have the
developable shape given by that Fourier series for the
circumferential mode n = 6 and the longitudinal mode
m = 0. From this analytical expression it is observed
that individual honeycomb cells in an impact loaded
honeycomb pad buckle in a modified form of the n = 3
deflection shape. This modified shape is determined as
a function of the width of the glue line joining the
cells. This is referred to as the effective glue line
width.

The net radial displacements of the impact buckled
hexagonal cell are obtained by subtracting the Fourier
series representing the original hexagonal cylindrical
shape corresponding to the n = 6, m = 0 mode from the
Fourier series for the modified n = 3 buckling shape.
This net deflection is inserted in the strain energy
expressions for the total elastic strain energy, inclu-
ding both bending and stretching strains. Using these
energy expressions the buckling stress is computed.

Buckling stresses are determined for hexagonal
cells in which variations in the geometrical parameters,
radius/thickness, radius/length, and effective glue
line width are introduced. In addition the mechanical
properties, Poisson's ratio and Young's modulus are
varied.

The effective glue line width is shown to be the
most significant parameter.
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INTRODUCTION

1. Background

Paper honeycomb, shown in Fig. 1, has been used for
the past 15 years as an energy dissipation device for
cushioning supplies and equipment airdropped by parachute.
Its outstanding advantages are low cost, lightweight, and
a crushing strength that is essentially independent of
variations in parameters such as impact velocity and mois-
ture content.

The configuration of the honeycomb pads presently
used for impact cushioning was chosen on an empiricaj basis,
because, unfortunately, the critical parameters in the
energy dissipating process have not yet been identified.
It is known that the crushing stress increases with the
honeycomb density, but how the cell size, paper weight,
and glue line width individually affect the crushing stress
has not been determined. One of the particularly puzzling
aspects of the behavior of paper honeycomb has been the
variation observed in the crushing strength of apparently
identical honeycomb pad specimens.

The purpose of this investigation is to study analy-
tically, the effects of cell size, wall thickness, and
glue line width on the crushing load of a honeycomb pad.
The primary objective of the study has been the development
of a rational guide for the design and construction of
honeycomb pads for various specific applications. It was
also intended that the analysis would lead to energy dissi-'
pation configurations superior to those of honeycomb presently
in use.

Th.! approach taken in this investigation is primarily
analytical, guided by limited experimentation. An analy-
tical rather than experimental approach was taken because
of the difficulty in obtaining consistent test results
even with specimens produced by a rigidly controlled fabri-
cation process in which no parameter variations are included.

In order to achi:eve this, finite deflection buckling
of a single cell is analyzed as though the stresses stay
within the elastic range during the entire buckling process.
Actually it is not unreasonable to assume elastic buckling.
Plastic deformation has to occur for significant energy
dissipation, but it occurs for the most part after the
initial buckling has occurred.

The buckle pattern of cells in honeycomb pads crushed
statically or dynamically resembles the buckle pattern of
circular cylindrical shells subjected to axial impact as
shown in Fig. 2b. T- the original approach to this problem
it was intended tha-" critical parameters would be determined
by representing the honeycomb cells, which initially have

I
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rounded hexagonal cross section shapes, as circular
cylindrical shells subjected to impact loading. The dis-
covery of a Fourier seriesv expansion tor thP developable
surfaces made it possible to investigate the behavior of
a hexagonal cell.

2. Previous Work
Much of thb most significant analytical and experi-

mental work concerning longitudinal impact ,loading of thin
circuljr 2cylindrical and conical shells has been done by
Coppa.±'2  He found that the.buckled shape of impac.ted
cylindrical shells is .Amilar ýo the developable polyhedral
shape qualitatively described by Yoshimura and;shown in
Fig. 3.

a. Shell Impact
Coppa suggested that buckling of cylindrical and coni-

cal shells subjected to longitudinal impact is a! phenomenon
related to the propagation of stress v•aves generated at the
impacted and of the shell.

The induced stress'wave propagates through;the length
of the shell until it exceeds the critical buckling stress
of a section ot the shell.length.. If the initial stress
produced at theimpacted end is not large enough to exceed
the critical buckling stress, the initial:stress amplitude
is successively ipcreased by reflection at the ends of the
shell during stress wave propagation until a critibal local
buckling stress is reached and local buckling commences.
This.stress increase phenombnon is produced during stress
wave propagation by reflection from the higher acoustic
impedance boundaries at the shell ends. The acpustic
impedance is defined as the'product of the square root
of the elastic modulus and the Mass density ,of a material.•
Coppa's hypothesis is corroborated to some extent by the
experimental observation that in his cylinders and in
University of Texas honeycomb test specimens, the buckles
tend to occur first at the top" and bottom of the shell or
cell walls. Honeycomb cells appear-to buckle at midlength
only after very extensive crushing. This characteristic
may be due to the buckle inhibiting effect~of entrapped air.

b. Developable;Polyhedral Surface
Yoshimura pointed out that it is pos'sible for a cylin-

drical surface to buckle into 4 developable polyhedral
shape as shown in Fig. 3b. This developable polyhediral
shape is composed of'a number of plane stirface panels which
have no extensional strain. There is infinite curvature
at the sharp fold edges. Yoshimurja suggested that the exAit
deflections for this developable surface might Le'represented
by a Fourier series with an infinite number of terms.

Furthermore, Yoshimura suggested that the deflections
of buckled, finite thickness, cylinders with the small radii

4 Fi /
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of curvatures that occur at the rounred fold edges as shown
in Fig. 2b, could be approximated by a truncated form of
the infinite Fourier series. Yoshimura used only a few
terms in his Fourier series representation of the displace-
ments required for the developable surface and described
the surface more in qualitative than in quantitive terms.

Hoff, Madsen and Mayer5 derived an approximate formula
for the coefficients of a Fourier series representing the
deflections of a cylindrical surface deformed into a poly-
hedral surface. This tormulh is apparently valid for
values of the circumferential mode number n equal to or
greater than 10. Yoshimura's hyoothesis of the developable
shape was verified by comparing the values of the coeffi-
cients of a Fourier Aeries for describing the buckled shaoe ]
of very thin axially loaded cylinders. It %As found that
the larger the number *of terms used in the series, the I
closer the shape approached the developable shape qualita-
tively described by Yoshimura.

I
3. Present Investigation

A few static and impact tests were performed on shells
in order to observe the buckling patterns and crushing I
strengths under both types of loading. Observation of the 4

buckle patterns was helpful in the derivation of formulas
for the displacements required to produce developable
surfaces.

The equations for the exact radial displacements
required for a circular cylindrical surface to deform into I
a develonable polyhedral surface are derived from geometri-
cal considerations. A formula for the coefficients of a
Fourier series expansion for the exact radial displacements
valid for all values of n is then derived. A simple relation
which exists between the radial and tangential displacements
eliminates the necessity of determining Fourier coefficients
for the tangential displac'ement." It is shown that the ini-
tial hexagonal cross section can be expressed in a Fourier
series representation, which provides a better model than i
the •$rcuhar co etion shell Initially assumed. The
buckled shane of honeycomb cells is found to be a modified
form of a developable surface into which a circular cylin-
der can deform. This modified shape is a function of the
effective-glue line width between adjacent honeycomb cells
in the honeycomb pad. Details of these derivations are
given in the Appendix'.

Once analytical expressions for the deflections in the
buckled shape are available, an energy method can be used
for computing bucklihg loads.

6o



PROCEDURE

A single honeycomb cell will be considered because it
is simpler to study analytically the response of single
cells than it is to study clusters of cells. Furthermore,
individual cells may be responding differently depending
on their physical location in the honeycomb composite.
In experimental investigations it is simpler to study the
behavior of groups or clusters of cells. The buckled shape
of a honeycomb cell resembles the developable polyhedral
surface which has slope discontinuities or zero radii of
curvature as shown in Fig. 3b. The actual buckled cylinder
with a finite thickness has folds which are more rounded.
The roundness of the corners at the folds increases as the
cylinder thickness increases.

Theoretically, a function with slope discontinuities
or infinite curvature can be exactly represented by a
Fourier series with an infinite number of terms (constrained
only by the Dirichlet conditions). 6  If this Fourier series
is truncated it will represent a surface with a finite
curvature at the position of the original slope discontin-
uities. The curvature at the folds increases with the num-
ber of terms retained in the series.

If the exact displacement equations could be repre-
sented identically by a Fourier series with an infinite
number of terms, there would be zero extensional strain
energy but infinite bending moment for elastic bending
at the fold edges for the model shown in Fig. 3b. This
Fourier series when truncated to a finite number of terms,
should provide a good representation of the deflection
shape of a buckled finite thickness cylinder. An increasing
number of terms would be required as the cylinder wall
becomes thinner. This is because the thinner the buckled
cylinder, the closer it approaches the developable shape
assumed by a buckled infinitely thin circular cylinder.
Increasing the number of Fourier series terms used would
also decrease the extensional strain energy and increase
the bending strain energy. For an infinite number of
terms the extensional strain energy vanishes and the
bending strain energy approaches infinity.

One way to obtain the buckling load in a static
analysis is to set the external work done on the cylinder
equal to the total strain energy in the cylinder. This
will in general not be the minimum buckling load. To obtain
the minimum the number of terms in the Fourier series for
the deflections is varied until a sufficient number of
buckling loads has been computed to establish the minimum.
The buckled shape is determined by the number of terms
included in the series.

7



1. Developable Surface Deflection Shape

Since the buckled shape of a cylinder has symmetry and
periodicity in the circumferential coordinate 0 and the
axial coordinate x, as shown in FP.g. 4, only the deflections
of one panel are necessary to obtain the coefficients for
the Fourier series representation of the displacements when
suitable coordinate transformations are made. The deriva-
tions of the exact radial and tangential displacement expres-
sions are given in Section 1 of The Appendix. Eqs. (l.ll
and (1.12), the expressions for the radial and tangential
displacements necessary to transform a dircular cylindrical
shell into a developable polyhedral surface show that there
is a simple relation between the tangential displacement
and the first derivative of the radial displacement. This
allows the tangential displacement to be expressed approxi-
mately in terms of the Fourier series expansi.on of the
radial displacement. Then there is no necessity for deter-
mining the Fourier coefficients for the tangential displace-
ment.

The radial displacement functions are expanded in a f
double Fourier series in 0 and x in the following manner.
First, the two derived functions of the exact radial dis-
placement w, with limits as a function of x, are represented
by a single Fourier series expansion in the circumferential
coordinate 0. This Fourier series has coefficients a which
are a function of x. The formula for the a coefficiýnts
is determined by integrating the derived exact radial dis-
placements over two regions of 0 which have limits that
depend on x.

W( )- .Ž.Q(x)Cc.SJ, e'

The deflected shape obtained has slope discontinuities
in the axial direction, but with a finite number of terms
in this expansion there is no slope discontinuity in the
circumferential direction. These a (x) Fourier coefficients
are themselves now represented by alFourier series in terms
of x, such that

Qj
i=O L

or

% cos cas i)'ifL.
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The coefficients a. in this Fourier series are
derived as shown in thtOAppendix. When an infinite number
of terms are taken in this Fourier series it yields exact
displacement values and slope discontinuities as shown in
Fig. 3b. With a finite number of terms in the series there
are no slope discontinuities in either the circumferential
or axial directions.

A computer program to compute the Fourier coefficients
a (x) and a was written for the CDC 6600 computer. The
caputer wa~used to determine the coefficients, plot the
surface deformations and compare the Fourier series repre-
sentation of the radial deflection with the exact values
of the radial deflection. 5

Hoff, Madsen and Mayer have published formulas for
computing approximate values of the Fourier coefficients
for large circumferential mode numbers (n a 10). A compu-
ter program was written in order to obtain the values of
these approximate coefficients. These approximate coeffi-
cients are compared in RESULTS, with the more exact values
of a referred to above.

2. Honeycomb Deflection Shape

After the coefficients of the Fourier series represen-
tation of the radial displacement for the developable
shape are obtained, it is possible to determine the radial
displacements required to produce the original hexagonal
cylindrical shell shape of individual cells of the honeycomb
pad. The hexagonal cell is merely the n=6, m=0 mode of the
circular cylindrical shell as shown in Fig. 5. This shape
represents the nearly perfect hexagonal shape of precision
made honeycomb. In mass produced manufactured honeycomb,
the cell tends toward a rounded hexagonal shape, which can
be more closely represented by a smaller number of terms
in the Fourier series for the n=6, m=0 mode.

During this work, to establish the nature of the
buckling pattern in crushed honeycomb, an impact test was
performed in which the honeycomb pad was cut into four
pieces prior to testing. The cuts were made along the cell
edges and then the four cut pieces were butted together for
the test. This approach was used to avoid the distortion
in the buckle pattern which cutting after testing usually
produces. Three of the pieces illustrating the test config-
uration are shown in Fig. 1. The cell buckle pattern is
shown in Fig. 6.

From this photograph it may be observed that the buckling
pattern of the cells in the crushed honeycomb is such that
the radial displacement from the sides which formed the
criginal hexagonal cross section shape alternates from inward
to outward as one progresses around the periDhery of the cell
wall and the maximum displacements appear to be equal.

io
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As mentioned previously, the initial honeycomb hexa-
gonal shape is equivalent to the n=6, m-O mode of a circular
cylinder. Cross sections of a buckled cylindrical shell in
the n=3 mode have three sides which form an equilateral tri-
angle at the axial nodes. However, there are six sides at
any cross section between the axial nodes. Maximum displace-
ments occur at the circumferential midpoints of the original
sides of the hexagon as shown in Fig. 7. From the exact
equations for the radial displacements it is found that
the difference between the maximum inward deflection at
these points for the n=3 mode and the n= 6 , maO mode, is
equal to the maximum outward deflection. Thus the alter-
nating inward and outward displacements observed in Fig. 6
can be regarded as the displacements of a circular cylin-
drical surface in a modified n=3 buckling mode minus the
n=6, m=O mode which represents the original hexagonal cylin-
drical shape of the cell shown in Fig. 5.The shape of the modified n=3 buckling mode of the
honeycomb cells is found to be a function of the width of
the glue line bonding adjacent cell walls which remains
intact during buckling, that is, the "effective glue line
width." The cross section of a buckled circular cylindrical
shell at the midpoint (fX/2 in Fig. 7) between the axial
nodes of the n=3 buckling mode is a regular hexagon. If
there is no extension of surfaces this section for the n=3
mode must be the same as the cross section for the n=6, m=0
mode. Thus there is no change from the original hexagonal
shape. The axial location of this section corresponds to
the axial nodes of a buckled honeycomb pad cell. The ends
of the honeycomb cells where displacements are constrained
to the hexagonal cross section shape by the facing paper
will always be axial nodes.

It is very difficult to tell by examination of buckled
honeycomb exactly what the geometry of the buckled cell is
Clearly there are alternating inward and outward radial
deflections. However, the hexagonal cells are restrained
at 4 points, i.e., there are 4 glue lines, not three as
shown in Fig. 8. Two of the four glue lines act as point
restraints rather than lines. Th'As it seems very certain
that the buckling pattern cannot be identical to the one
for the n=3, or the modified n=3 modes. Nevertheless,
these shapes which can be represented in a reasonably
convenient mathematical form can be used to approximate
the buckling behavior of honeycomb cells in a pad, and to
obtain an indication of the effects of the restraint offered
by the glue lines.

To continue the analysis of the glue line effects it is
necessary now to express the radial deflections for the modi-
fied n=3 mode in an analytical form that can later be used
in strain energy calculations. The necessary equation can
be obtained by taking the equation given previously for

W••, i.e.,

W (X,) -L._ COS J17 0

13 °I
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and computing the coefficients a.. for the deflections shown
in Fig. 8c for the modified n=3 19de. These deflections I
are obtained by applying purely geometrical considerations
and the requirement of no extensions in a developable surface.

When n is specified, the number of folds in the circum- A
ferential directions is specified. This does not mean that
the paper honeycomb will necessarily buckle in this pattern.
Consequently if n is specified all conclusions regarding
buckling loads must be predicated on the assumption that
the actual buckling pattern will agree with the assumed
pattern. The number of longitudinal folds (buckles) is
not specified. The more folds or buckles there are the
higher the buckling load is likely to be.

It will now be shown that if a cell buckles into the
modified n=3 mode the effect of the glue line will be to
decrease the buckle length, and increase the number of longi-
tudinal folds, and hence the buckling load.

Consider Fig. 8 a. This is one of the polyhedral
panels of the buckled cell surface viewed normal to the
surface. The solid lines indicate a panel for modified
n=3 buckling, and the dotted lines indicate the shape
for the plain n=3 mode. For this mode the panel is an
equilateral triangle with sides 21ra/3. (The inextensibility
conditions requires the total length of three sides to be
the same as the circumference of the cylinder, diameter 2a,
from which the developable polyhedral surface is formed.)
For the modified n=3 mode the triangular panels are changed
to trapezoids. If the glue line width is 2b, as seen in
Fig. 8b, the sides of the trapezoid have a length

gtr - 4-
-3

as shown in Fig. 8a; The line AB in Fig. 8c is the line
AB shown in Fig. 8a. The projection of AB on the horizontal
in Fig. 8c is A and Ix=! where L is the initial length of
the cylinder.. The horizontal projections of AB and A'B' in
Fig. 8c are in the same proportion as the sides of the tri-
angle and the trapezoid in Fig. 8a. Hence

or 1T - = the buckle length of the modi-
fied n=3 mode. The projection of AA' an the horizontal is

16
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the same fractional part of I as 2b is of 2wa , that is,

3--bx as shown in Fig. 8 c.

To represent the modified n=3 mode the double Fourier
series for the radial deflection can be obtained from the
equation for the n=3 mode by simply modifying the argument
of the cos imffx term to take into account the change in

the Deriodic interval which the glue line causes. Thus
for the modified n=3 mode

iX,
tii(x, O) = Y 11 CS(j-/_ CS3Je

where X -,-h

The coordinate transformation is introduced to out
the origin of the coordinate system at point A', the fold
in the buckling pattern.

The complete derivation of the exDressior:s for the I
aij coefficients is given in section 4 of the Aopendix.

3. Buckling Stress
The Fourier series exoansion for the net deflection

of the buckled honeycomb cell is inserted in the bending
and stretching strain energy equations as shown in Section
5 of the Appendix. To obtain a buckling stress the sum of |
the bending and stretching strain energies is equated to
the work done by the aonlied axial force uo to the time the
buckling pattern is formed. These quantities are each
functions of the deflection shape. The deflection shape is
also a function of the indices i and j in the double Four-
ier series. The higher the values of i and j the closer the
developable shape is aoproached. The indices are increased I
until a minimum buckling stress is obtained. This value
represents the stress required to buckle the shell into a
oarticular mode. (In this case the modified n=3 mode.)

The non-dimensional buckling stress, a/E is shown
as a function of geometrical parameters t/c, I/c, the glue
line width, 2b, and Poisson's ratio in the RESULTS.

N
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RESULTS I

1. Develooable Polyhedral Surface Enuations--Exact Disnlacemenrt.:
The shape of a circular cylinder which has buckled into

a polyhedral develdnable surface is symmetric and pe'riodic
in the circumferential coordinate and the axial coordinate x.
Thus only the enuations of the deflections.of a single ,nanel
of the buckled surface are initially renuired to obtain the
Fourier series exnansion of the displacemefit of the entire j
buckled surface when suitable coordinate tran.formations s,..
made.

The radial and circumferential 'displacements, .,: :n,' v I
respectively, of a single panel have each been dete-rm'n,:4"
ourely geometrical analysi.s as two senarate functiorna r? ,
the circumferential coordinate e and axial coordinriat'e x.
Each function is valid in a reg'ion whose .ctrctmfeWer~t' 3!

coordinate limits are a function of the axia] coordtr:a4 ,'. ,
These functions derived in Section 1 of the.An.r'.....x .. : :.

W (x, e) [ac 2+ cosi'n a os n

(X , °<-°0S0)a in- -N a.

+ 9
V (x, e) = + oh min9 -COacos CO107

a~ i
w cx,o) ,= [&#+c,(x)c..] o,,( g.- o) #.- o),,s/n -o) -a. , '"

I I

where

XC A =Radial Displacemenf ampfdao'e , .

q, (x) Q-A+ -Ci (X) Radial Displscement amptde o
1,

I,'
Zl

a~f , 0:0 :L,()=QA-c x .,•/O,•ce/atmu'



and Q and A are the amplitudes of the maximum radial
displacement at the longitudinal nodes in the outward
and inward directions respectively. The values of the
amplitudes given by Coppa3 are:

aI

From Eqs. (1) and (2) it may be seen that there is
a simple relationship between the tangential and radial
displacements. The tangential displacements can be
expressed in the following manner:

_L__*+&,rin o );5 O c -fe[I4]

a. Fourier Coefficients of Double Fourier Series

The derived radial displacement functions w given in
Eq. (1) are expanded into a double Fourier series in `.
and x as follows. Complete details of the expansion are
given in section 2 and 3 of the Apnendix.

First the two functions of radial displacement w
given in Eq. (1) are represented by a single Fourier series
expanded in 0. The Fourier coefficients a. are a function
of x.

W ¢,, a) &j (X) cosjnO
/=O ,zi

The deflected shape obtained has slope discontinuities in
the axial direction, but with a finite number of terms in
this expansion there is no slope discontinuity in the cir-
cumferential direction.

The a. (x) coefficients are determined by integrating
the two fuictions of w from Eqs. (1) ans (2) over the two*
applicable regions of e(x) as presented in Section 2 of
the Appendix.The equation derived is:

* V/-Cos~xjE,, r~~l

(--7 io C SF,
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where =lj
i ~F = -jn°

These a. (x) Fourier coefficients are expanded in a
Fourier serias in terms of x in Section 3 of the Appendix sucY
that

co jo7T

or (8)

w (X ) C"os L CosJP7
,/=O i:O

An infinite number of terms in this series gives the
deflection of a developable surface with slope discontinuities
at the surface folds. However a finite number of terms repre-
sents folds with finite radii of curvature.

The formula for the Fourier coefficient a.. is obtained
by integrating the Fourier coefficient a.(x) inAthe region
of one axial half wave length by taking Into consideration
the symmetry of the deflections in the axial direction.
This derivation is given in detail in Section 3 of the Annendix.

The equation is
i

- ( 9 )
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2. Computer Check

Numerical values of a have been computed and used
to plot the profile of the dAflections of a circular cylinder
buckled in the n=3 mode as shown in Fig. 9. Three curves are
shown. The labels I=1,6,19 indicate the number of i terms
in the expansion. Normalized a44 values determined from the
derived exact formula can be comered in Table 1 w5th the
values of aiq determined by using the Hoff, et al approxi-
mate formula 'n -10). For large values of the circumferential
mode number n these normalized values are nearly constant for
all values of n, and thus essentially independent of n. It
can be seen that the values obtained from the approximate
formula are very good approximations to the exact values for
n greater than 7 or 8. At the lower values of n, there is
an appreciable difference.

3. Honeycomb Cell Shape Equations

As indicated previously the buckle shape of crushed
honeycomb cells is to be approximated by the modified n=3
radial deflection shape. A Fourier series which will repre-
sent the shape is

W,7=3 moo, (XP 19)I=Z Z ,1  LO~GoS"
i =o jo -

where b is half the effective glue line width. The expression
for the coefficient a U 3 is

S(-/) Xý]" 7f -/ Fh Ef- i2 -1
~,61 -2:y: ) -

~rIra

C-cos~]j Cosco(i~-~ /'~.3 •

3 sin

wlih+* szme ti~~,vf 7 pj
2
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The values of a A4 coefficients have been computed. To
test their validity t edeflection shape produced by using the
a coefficients for the degenerate case of zero width glue
lt~ihas been compared to the displacement shape produced by
the aij coefficients in the n=3 mode. The two displacements
agree.

The net displacement of a buckled honeycomb cell is
eaual to the Fourier series expression for the displacements
for the modified n=3 buckling shape minus the original hexa-
gonal cross sectional shane which is the n=6, m=0 mode. -,nce
the original hexagonal shape is in the m=0 mode, the displace-
ment shape is not a function of x.

The original hexagonal cross sectional shade cylinder
has non zero i and j terms when expanded in 6je, but when the
hexagonal shape is expanded in 3J8 the odd .A terms enual zero,
as shown in Section 4 ofthe Appendix. The net deflection is
expressed in the form

~ne ~ fa~ 3  OS/?I_ 4j 6] c Ox -3 0

4. 2

4. Buckling Stress

As indicated in the previous section the buckling stress
is determined by using the expression for the net deflection
to compute bending and stretching strain energy. A computer
program was written to determine the strain energies and the
external work done by the applied load. These. values were
then used to compute the minimum buckling stress, as shown in
Section 5 of the Apbendix.Buckling stress increases with ce.l
wall thickness and increased effective glue line width as
shown in Fig. 10. In this figure the buckling stress is f

shown in non-dimensional form by dividing by Young's modulus E.
Cell wall thickness t is non-dimensionalized by dividing by
the cell wall width c. Note that the buckling stress increases
very rapidly with thickness for thin cell walls (assume c is
constant) at small values of t/c, and much less rapidly after
t/c exceeds 0.02. The analysis which has been provided is
most applicable for thin wall cells and becomes less accurate
as the wall thickness increases. This is because the cells
will tend to buckle in modes which do not represent developable
surfaces as the wall thickness increases. The difference in
the buckling patterns is readily observed by loading cylin-
drical shells of different wall thicknesses until they buckle.
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Note also, in Fig. 10, the significant increase in buckling
stress as the glue line width is increased. The same effect
is produced by decreasing the cell size. The results in Fig. 10
are for one axial buckle length ( V/c - 1.0). However,
increasing the glue line width increases the buckling stress
significantly at other values of the buckle length (9 /c).
This is shown in Fig. 11. The upper group of curves in Fig. 11
indicate that for a constant effective glue line width, the
buckling stress increases as the value of 1/c decreases, or
as the buckle length becomes shorter and shorter. However,
the lower group of curves ( j /c = 4.0 and I /c = 10) show a
reversal of this trend. Although this behavior seems at first
glance contradictory it is in fact what one might exDect.
There is a buckle length at which the buckling stress will have
a minimum value and this is the buckle length which will be
observed no matter what the cell length is. If this were
not the case the buckle length for minimum buckling scress
would always be determined by the overall length of the cell.
It has often been observed that if the loading of a cell
is stopped soon enough a number of folds (with a short buckle
length) will be formed somewhere along the cell, usually near
one end or the other, and the rest of the cell will be
unbuckled. This phenomenon has been observed for both static
and dynamic loading. The results in Fig. 11 were comnuted by
assuming that the loaded cell would buckle at some arbitrary
value of 9/c. Hence these results should not be interpreted
to mean that buckling will occur at any of these values of 1/c
shown. It can be said, however, that for t/c = 0.001 if an
axial load is applied and slowly increased until buckling
occurs the buckling length will be bounded by the inequality
1 < 9/c < 10. . It should be noted that for 80-0 - 1/2
honeycomb the value of c is approximately 0. 2 5in, and t is i
approximately 0.007in. Thus t/c = 0.028 and for 9/c = 4,

z=l.0in. This value of g , the buckle length, is aooreciably
greater than the values that have been observed. A possible
explanation of the discrepancy might be that the preferred
buckle length (minimum buckling stress) is sensitive to the
value of t/c, and the results would therefore have been con-
siderably different had t/c = 0.028 been used in the comou-
tations. A more likely explanation is that the discrepancy
is simply a result of extrapolating from an idealized situa-
tion in which the honeycomb cell is uniform in all respects
and is assumed to behave elastically right up to the time of
buckling, to the real situation in which the cell is far from
uniform in all respects and buckling is more plastic than
elastic. The results should be interpreted as simply an
indication of how the buckling stress is affected by the
various parameters, rather than an indication of the buckling
stresses and buckling lengths that might be expected under a
given set of circumstances.
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As indicated previously a constrained axially loaded
hexagonal cell in a honeycomb pad buckles in a modified form
of the n=3 mode shape. There are six buckles in the circum-
ferential direction. Except at the axial nodes, three of the it
buckled sides each contain two of the straightened out axial
folds produced in the construction of the original hexagonal
cell. The maximum number of buckles in the axial direction
can be estimated from the L/a ratio using the following
expression:

(A Q) •

LLIL-_ _ _

,n_ 1.68-L

This expression is obtained by considering %.he lr"f
ing value of the sine of the angle formed by the buckled
cell wall panel and the original cell wall.

For comparison it mav be noted that the crushed h:.o-
comb cell in F!g. 6 has an

-12

a

Hence
-m 1.68 * = 21

a

From the photograph about 19 buckles can be counted alcnr -r
cell length.

Poisson's ratio for paper is not very well known. -
determine i':e, influence on the buckling stress of paper
honeycomb the c.moutational results shown in Pig. 12 were
obtained. Obviously Poisson's ratio has an insignificant
effect on the buckling stress.
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. Hexagonal paper honeycomb cells buckle under axial
loading into a pattern which approaches a developable sur-
face for very thin walls, and departs more and more from that
type of surface as the thickness of the cell walls increase.

2. The effective glue line width between adjacent
honeycomb cells has a significant effect on the buckling
stress of thin wall honeycomb cells.

3. Variations in the effective glue line width have
a greater effect on the buckling stress when the effective
width is near the maximum value it can have, i.e., the cell
wall width.

4. The cell buckling stress increases very rapidly
with wall thickness at thicknesses less than 0.02c and much

less rapidly at greater wall thicknesses.
5. The buckling stress increase with wall thickness

becomes more pronounced as the effective glue line width
increases.

6. Changes in Poisson's ratio have an insignificant
effect on tD- buckling stress.

7. Honeycomb pads containing hexagonal cells constrained
by other hexagonal cells buckle in a modified form of the
circumferential mode number n=3 of a circular cylindrical
shell.

8. The approximate Fourier coefficients in the exoress-
ions derived for the radial deflections by Hoff, Madsen and
Mayers are quite good for surfaces with a large number of
circumferential buckles but rather poor when the number of
circumferential buckles is small.

9. A more precise analysis of the buckling of hexa-
gonal cells is not justifiable in view of the great differ-
ences between the characteristics of an actual cell and the
theoretical cell used in analysis.

Recommendations

To obtain a paper honeycomb which has uniform crushing

strength, special attention should be given to quality
control of the following parameters:

1. Glue line width
2. Cell wall widths
3. Paper thickness
To provide further authentication for this analysis

computations should be made of buckling stresses, for addi-
tional values of k/c and t/c. Further carefully controlled
experimentation should be done using paper honeycomb with a
wider range of values of c and t.

30



IFI

REPERENCES

1. Coppa, A. P., Buckling of Circular Cylindriual
Shells Subject to Axial Impact, NASA TND 1510,
1962.

2. Coppa, A. P., Nash, W. A., Dynamic Buckling ofShell Structures Subject to Longitudinal Impact,
Air Force Flight Dynamics Laboratory, FDL-TDR-
64-65, December 1964.

3. Coppa, A. P., On the Mechanism of Buckling of a
Circular Cylindrical Shell Under Longitudinal
Impact, GE R605D494, September 1960.

4. Yoshimura, Y., On the Mechanism of Buckling of a
Circular Cylindrical Shell Under Axial Com-
pression, NACA TM 1390, 'July 1955.

5. Hoff, N. J., Madsen, W. A., Mayers, J., "Post-
buckling Equilibrium of Axially Compressed
Circular Cylindrical Shells," AIAA Journal V4#1,
January 1966, pp 126-133.

6. Wylie, C. R., Advanced Engineering Mathematics,
McGraw Hill, 1966, Chapter 6.

7. Karman, T. von and Tsien, H. S., "The Buckling of
Cylindrical Shells Under Axial Compression,"
Journal of Aeronautical Sciences, V8,pp 303-312 (1941).

8. Evensen, D. A., "Some Observations on the Nonlinear
Vibration of Thin Cylindrical Shells," AIAA
Journal Vl #12, December 1963, pp 2857-2858.

9. Novozhilov, V. V., Foundations of the Nonlinear
Theory' of Elasticity, Graylock Press, 1953,
Chapter 1.

10. Timoshenko, S. P., Gere, J. M., Theory of Elastic
Stability, McGraw Hill Book Company, 1961,
Chapter 8.

I
I

31

4



LIST OF SYMBOLS

a radius.

aj=aj(x) Fourier coefficient of Fourier series'expansion in 9.

aij Fourier coefficlent of double Fourier series expansion.
a. Fourier coefficient for n=3 mbde.ij3
aij6J ai, Fourier coefficients for n=6 mode expanded'in 6j1) and

ai•6 3j9 respectively. f ndd

a radius vector.'

A maximum inward radial displacement, also a dummyvariable. 2
Aij Fourier coefficient normalized with respect to n 2a.

b half width of effective glue line. :
B dummy variable.
c buckled honeycomb cell axial half:wave length, also

cell wall~width.

Cl(x) radial displacement at 0 = •

c 2 (x) radial displacement at 0 = 0.

E variable equal to 1 + jn, Yohng's modulus.
F variable equal to 1 - jn."

h thickness.

i axial mode number.

j circumferential mo'de humber.

k variable subscript.

£ length , i

k x buckled panel axial length.

£ one half buckled panel circumferential length.

L cylinder length.

m axial buckle mode number.
n circumferential'buckle mode number.

P axial load, dummy variable,
Q maximum outward radial displacement.

r radius, radial coordinate.

t thickness.:

T dummy variable.

U, U a;ial displacement, axial displacement vector.
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Ub, Ue
Utot bending, extensional and total strain energies.

v, V tangential displacevent, tangential displacementa
vector.

w, 1 radial displacement, displacement vector.
Wnet net radial displacement of buckled hexagonal cell.

WH radial displacement required to buckle circular
cylinder into hexagonal cylinder.

Wn= 3  radial displacement in the n=3 mode.

Wn= 3 mode radial displacement of honeycomb cell in modified
n=3 mode.

x axial coordinate.

xk axial coordinate of a particular cross section.

X general axial location of axial cross sections.

y tangential coordinate.
z • position vector in final coordinate system.

0 angle locating slope discontinuity in final coordinate
system.

y circumferential period = 2w/n.
6 total axial displacement of buckled cylinders.

6 n Kronecker delta.
£

x' '
€NO axial, tangential and shear strains respectively.
0 initial position polar coordinate at x = X.
0 initial position polar coordinate = /n-

at x = po - X.
oat 0 o 1  angles locating slope discontinuity in initial

coordinate system 0 and 01, respectively.

Sv Poissons ratio.

final position coordinate system.

P mass density.

a buckling stress of honeycomb cell.

angle between axial generator and buckled panel.

,x denotes differentiation with respect to x.
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APPENDIX

DERIVATION OF EQUATIONS

The analysis of the buck)ing of a hexagonal honeycomb
cell during axial loading requires five consecutive steps. j

.These are:
1. Determination of the exact displacements which

transform a circular cylinder into a polyhedral developable
surface.

2. Deriving a formula for the coefficients of a
Fourier series for the radial deflection expanded in terms
of the circumferential coordinate 8.

3. Derivation of a formula for the coefficients of a
double Fourier series for expressing the radial deflection
in terms of the circumferential coordinate e and axial
coordinate x.

4. Derivation of a formula for the coefficients of a
double Fourier series for including in the radial deflection
of buckled honeycomb cells the effect of the effective glue
line width.

5. Computation of the strain energy in cells buckled
in a specified mode and then using this energy to compute the
buckling stress for that mode.

These steps will now be discussed in detail.

1. Exact Displacements
The initial coordinate system of a circular cylindei

is shown in Fig. 3. A circular cylindrical surface can
buckle into a develoDable nolyhedral surface such as the one
shown in Fig. 3 which has a circumferential mode number n=6
and longitudinal mode number m=8. In this polyhedral devel-
opable shape there is no extensional strain at any point in
the surface.

In order to determine the exact radial and tangential
displacements for a circular cylinder that has buckled into
a developable surface it is necessary to determine the
radial displacement amplitudes as a function of x.

Fig. 4 shows Drofile views along the longitudinal axis
of a general developable surface at angular coordinate loca-
tions e = 0 and e = n/n. The radial deflection amplitudes
as a function of x are determined in the following manner:

Consider the longitudinal cross section shape at e = 0
shown in Fig. 4a. Coppa, from geometrical considerations
and the condition of no extensional strain, has shown that
the radial deflection maxima are:
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Sin (outward deflection)

(1.1)

A� i�a J ){• CoS } (inward deflection)
j97

These expressions apply only if the cross section is an enual
sided polygon, which it will be at the cross sections where
maximum deflections occur. For intermediate sections let c.'x"
be the radial displacement at e = 0. 2"
Consider 0<Sx < 33

x -
From Fig. 4a, c (0) = -A, c Ax 3

) -A (1.2)c2 (x)

From Fig. 4b, cl(0) = Q, C( ) = -A.

A+Q
C'(X)) + A, )x#Q Q-A-CZ(x)= c 2 (., -X) (1.3) -

Also C2 (X) C, (A- X) (i.")

Furthermore, from Fig. 4 it can be seen that c 2 (x) and c (x)
are periodic in x with a period equal to 2t . ?ig. Al Ihows
some cross sections of the developable surface between the
axial nodes. Detailed views of the cross sections are shown
in Figs.2a and 2b. Note that the cross sections have 2n
variable length sides at any location between the axial nodes
for m = 1,2,.....,M. There are six sides corresponding to the
circumferential mode number only at the axial nodes, x = m ,
where six of the sides degenerate to zero length, and the siA
remaining sides are equal to 2 L or 2w-, since there is no S
extension from the original surface. A~so note that the sides
degenerate to zero length in such a manner that it aopears that 4
the cross section at an axial node is the same as an adjacent
node cross section, except that the sections are rotated I
"I/n radians with respect to each other.

J
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Fig. A2b Detailed Cross Sections of Deformed Cylinder
Between Axial Nodes
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Consider now a general cross section of a cylinder buck-
ling in an arbitrary circumferential mode n as shown in Fig. A3.
This is an exaggerated view of a portion of a cross section
between the axial nodes, such as the cross section shown in
the'milddle of Fig. A2b.

The radial and tangential displacements, w and v, shown

change the original cylindrical surface into a polyhedral
developable shape. In the initial unbuckled coordinate system
6 is the angular coordinate,and C is the angular coordinate
in the final buckled configuration coordinate system. The
angular coordinate locating the limiting edge of one of the
sides which is a function of x, is given by the angle 8(x),
measured in the final buckled coordinate system.

Consider first the deflection for < cB(x) for any
general position x = X along the cylinder axis as shown in
Fig. A3b.

The initial position point e = e from which the
final position point C = 8(x) is mappe&(After deflection can
be determined as follows:

at C 8(x),

6 = e (x)
8

and tan =tan 0

For inextensibility

a. + c. (x)

[a +c [( (x)] tan' (1.5)

From Fig. A3b
Y 0 X

-(1.6)
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Consider 0 - x x-

Substituting Eq. (1.6)in Eq. (1.5)

= a.c 2-~ [a + c2Oc).J-
[a +) (,K) 4

Consider the deflections for 0 - 8, that is, for

2vert projection = afcos (1- v())sin 0+w()cosG
= z (•) cos.• (1.7)

hor projection = a sin V(1+)cos 6? w(e)sin 6
CA -/ Cce( x)• tan• 18

Also for inextensibility

[ja 4c,,(x) a Inf O (1.9)

Substituting Eq. (1.9.) into Eq. (1.8)

aR in L9- v()cos 6 4 w(0) S.in =a (1.10)

Multiplying Eq. (1.7) by cos e and Eq. (1.10) by sirn 0 and
adding yields

w(e) = [a c. 2 (x)] cos&e L• e.ie-a (1.1 )

From Eq. (1.10) and (1.11)

v() = [a- # (x)]sn - a ecose (1.12)
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Note that

d 0

Also note

W(¢) - (') -A 2 a-d-o deoO- = 2a/ (1.14)

Continuity in the circumferen~itl direction at the
deformed cylinder ends demands that :

271r
LVd y ý_ I e 0

Eq. 1.12 satisfies this requirement.
The deflections were determined from Fig. A3a in a

similar manner for 8(x)_eŽ• and were found to be:-2
W(Xo)=[ W+c Cos(]o e -e0(7o sin e)-,RCos(;-)i

nl

-V-/j- W 0)(l.=l-)

de

Eqs. (1.11), (1.12), (1.15), and (1.16) together comorise
the exact radial and tangential displacements required for
a circular cylindrical surface to form into a developable poly-

hedral shaped surface. The terminology "exact" is used to dis-
tinguish these equations from the series approximation forms
which are subsequently used.
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The displacement, u, of the developable surface in the
axial direction is determined in the following manner. lRefer-
ring to Fig. A4,

u = -x (/- cos ) -x(/--r . ) (l.I0)

where $iP7, ('A*Q)

From Eq. (1.1)

sio¢ a Trtan !

I

Inserting Eq. (1.19) in Eq. (1.18) yields
G

An (1.2"•)

2. Fourier Series Expansion in 6
The radial defle'ction given by Ea. (1.11) can be exoanded

into a Fourier Series in terms,of e in the following manner.
Since the radial deflection is periodic in e with period 2w/n
only the radial .deflection between the circumferential nodes
is required for the Fourier Series expansion. The radial
deflection at any axial location X can be expressed as:

ooI

w(X,)- X) CJ. J O (2.1)j -/ I
Since the radial deflection is an even function in e, b = 0

and %

i )W- ., o)<-d•O, n< (2.2)

From symmetry
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Fig. A4 Detailed Axial Section for u Displacement

Determination
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ey (K) - f ,,- (',. 9) C o and (2.3) 1
%(x)

d', .,q ;,.
where

o(x)- - 7 '- (2.5)

Now considering the symmetry of the deformation (Fig. 4)

k/ (X) -ro,• 61 X) >_? 0,4,(X) :w4x ', ,4-j_••x••

And since it is also symmetrical about x = x only 0 X z.
must be considered.

When

-04 6-0 
(2.7)

where = 0, -X) is the initial rcosition angular coordinate at i
x X

-i £l-X) 4j JyX = (2.8)

and 8 (1 -X) is the slope discontinuity angular limit in theInitifi p~sition angular coordinate at x = .- X.To facilitate reduction of the second fntegral in Eq. (2.4)

transform it to the variable el(ox-X).

,) X-
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Substituting Eqs. (2.6) thrQugh (?.l'O) into Eq. (2.4.) yidld-ý

OfX =X f

77 ~jf J WV( X,G cosyPnQdo

*0

Now

c snCsn 9) CS j j , )Io (2.:2)

and from. Eq.. (1.11)

but from Eq. *(13j)

.5 (2, 1")

Evaluating the first integral in Eq. (2J,1)!by use of Eqs. (1.11)
yields

f w(X, cosj n~d~~~ (xj -

Fz

£= /#jk F'1yi
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Eq. (2.17) reduces to
-•I Sin of~ Xin Fer ---

(/-cosT)( E + FZ

oEe cosFe 1e

3. Determination of Fourier Coefficients for Double Fourier

Series

The expression given in Eq. (2.2) used with the ;e.:ived
Fourier coefficient in Eq. (2.18) yields a deflection sr.ape
which has no slope discontinuities in the circumferential
direction but has sloDe discontinuities in the axial direction.
This is because a (x) has slope discontinuities in the axial .1
direction. In order to obtain the radial displacement func-
tion which has no axiai direction slope discontinuity for a
finite number of terms, the radial deflection can be expressed
as a double Fourier series which is the same as expanding
aj(x) in a Fourier series as a function of x or:

L (3.1)
i:oj-o

Using aj(x) as it is defined in Ea. (2.1) I
~,,aO) Cos dx (3.2)

m
For aj an even function in x

LL

2M /J I a ( jCos-u
TV Z' -J Ld* "
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4. Fourier Coefficients for Honeycomb Cell
Inspection of the buckled cells of the impacted paper

honeycomb specimens, Fig. 6, shows that the radial displace-
ments from the sides which form the original hexagonal shape
are alternately inward and outward as one progresses around
the cell wall. The original hexagonal shape can be represented
by the analytical expression for the radial displacement from
the derived Eqs. (3.8) and (3.1) by using the longitudinal mode
number m = 0 and circumferential mode number n = 6.

Cross sections of a buckled cylindrical shell in the
n = 3 mode have three sides which form an equilateral tri-
angle at the axial nodes. However, in the n=3 mode, there are
6 sides (2n) at any cross section between the axial nodes.
Maximum displacements in the buckled honeycomb occur at the
circumferential mid-points of the original sides of the
hexagon. The difference between the maximum inward deflection
at these points for the n = 3 mode and the n = 6, m = 0 mode
is equal to the maximum outward deflection, Fig. 7. Thus
the alternating inward and outward displacements observed in
Fig. 6 are the same as the displacements of a circular cylin-
drical surface in a modified n = 3 buckling mode minus the
n = 6, m = 0 mode which represents the original hexagonal
cylindrical shape of the cell.

The modified n = 3 buckling mode of the honeycomb cells
is a function of the width of the glue line which remains
intact during the buckling, i.e. "the effective glue line
width," see Fig. A5. Here b is the half width of the effec-
tive glue line. The cross section of a buckled circular
cylindrical shell at the midpoint between the axial nodes of
the n = 3 buckling mode is the same as the cross section for
the n = 6, m = 0 mode. This means that the deflections are
the same and consequently there is no net displacement at
that section between the two deformation modes. This axial
location corresponds to the end conditions of a honeycomb
pad in Fig. A6 cell, where displacements are constrained by
the facing paper. The radial displacements of the buckled
honeycomb are determined in the following manner:

5I
I
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5. Strain Energy Expressions
To obtain the critical buckling stress the strain

energy is calculated and then equated to the work done by the
force required to cause the buckling. The strain energy cal-
culation proceeds as follows. Transform the axial coordinate
xI in Eq. (4.1) to a new axial coordinate x (see Fig. 8).
This is done in order to satisfy the naturai boundary condi-
tions of zero deflection and simple support at the limits of
integration in the strain energy expression. The transfor-
mation relationships are:

#, X2 0 at the limits

X 3~rX between the limits

Insert this expression in Eqs. (3.1) and (4.1) and
subtract to obtain the net radial deflection of the hexavo,,2
cell. Note that w(x,e) when n = 6, m = 0 reduces to

a. aj 6 cos 6jG0
i=0 j=0

which can be written

gZ1i6 Cc'S 0
i=0 j"
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u(x) is axial displacement function
u(o) = 0, the total displacement = u(L)
For one buckling length u is defined in Ea. (1.20).

,6 U(cA(-(5.15)

(4 *U (5.16)
or o

From Eq. (1.18) it can be seen that u is a function of sin
which can be determined in the following manne-;
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